domingo, 9 de junio de 2019

Llegó el vídeo



En anteriores artículos dedicados al PWM76ASFA, he expuesto mi intención de realizar un vídeo donde se pudieran ver sus características principales, y en particular la combinación de sus funciones de aceleraciones y deceleraciones progresivas, junto con la simulación de que los trenes, al pasar delante de las señales las reconocen y presentan en el panel del propio controlador la indicación de las señales que acaban de rebasar. Y por supuesto, se obedece a esas señales realizando las funciones que el maquinista realizaría a la vista de esas señales.

En realidad, el conseguir esto, tiene un poco de truco, ya que las señales en si, no tienen interacción alguna con el controlador. sino que lo que actúa sobre el controlador son los sensores situados en la vía, y por lo tanto la señal podría incluso no existir y todo funcionaría igual.

Por ejemplo si tenemos una señal avanzada en amarillo (como la que se ve en primer plano en la imagen de cabecera) y si tenemos un sensor en la via junto a la señal, al pasar el tren se activará el sensor, y si ese sensor activa la función "B" del controlador, se encenderá en el panel de ASFA del PWM76 el piloto correspondiente al "Aviso de Parada"y el tren comenzará a decelerar, simulando así que obedece a la señal.

Sin embargo, el sensor no sabe en que aspecto está la señal, de manera que se produciría el mismo funcionamiento con la señal en verde. Para evitarlo lo que hacemos es apagar el sensor cuando la señal está en verde, y de esa forma ya no detecta el paso de los trenes, de modo que no se activa función B del controlador, sino que se mantiene la función "via libre" y el tren continúa su marcha a la misma velocidad.

El sistema es general, es decir, para una señal de tres aspectos podríamos tener dos o incluso tres sensores conectados de forma que solo esté activo el que corresponda al aspecto que muestra la señal en cada momento. De cesta forma solo se activará el sensor correspondiente cuando pase el tren por la señal.

De hecho, la forma más sencilla de hacer esto, es jugar con la propia alimentación de las luces de la señal. Si conectamos la alimentación de un sensor al mismo punto que el led que se enciende para poner por ejemplo la señal en rojo, ése sensor sólo funcionará cuando la luz roja esté encendida.

Pero al hablar de encender y apagar los sensores ¿a qué me refiero?  Bueno, si son sensores de tipo Hall que tienen tres terminales Vcc, GND y OUT apagarlos sería dejarlos sin alimentación es decir que si conectamos la Vcc del Hall al mismo cable que alimenta el led rojo de la señal, este sensor sólo actuaría cuando estuviera encendida la luz roja. Sin embargo, hay una cuestión, y es que la mayoría de los semáforos funcionan en modo ánodo común, es decir que los leds se encienden y se apagan, no porque se corte el polo positivo de su alimentación, sino porque se corta el polo negativo. Bueno, no habría problema, si tenemos eso, bastaría que la alimentación positiva llegase también permanentemente al Vcc del sensor y conectar el terminal GND al cátodo del led. Cuando este cátodo se una al negativo de la alimentación se encenderán tanto el led como el sensor.

Y aquí es donde me ha surgido un problema que me ha vuelto loco. El tema es que con el funcionamiento descrito los sensores Hall se encienden y se apagan cuando se encienden y se apagan las luces correspondientes de la señal, y ocurre que como muchos elementos electrónicos, al apagarse o encenderse hacen cosas raras.  Hasta ahora no me había dado cuenta, porque en todos casos en los que los he usado, los sensores Hall estaban permanentemente alimentados, así que funcionaban perfectamente.

Las cosas raras, que ocurren es que al encenderse o apagarse, emiten una señal por la salida, análoga a la que se produce cuando detectan un tren. Esta señal, naturalmente llega al controlador y como no corresponde realmente al paso de un tren, distorsionan totalmente el funcionamiento del sistema.

Seguramente hay muchas soluciones, por ejemplo que no se apague el sensor nunca sino que su señal OUT llegue o no al controlador, incluyendo en su camino un relé o algún tipo de conmutador electrónico. Pero cualquier cosa que hagamos en ese sentido es un complicación adicional.

Asi que la solución que he tomado es muy simple: En los puntos en los que se necesite un sensor que haya que apagar y encender, sustituir el sensor Hall por un sensor Reed. Éstos como son más o menos mecánicos no producen ningún falso contacto.


En el esquema anterior se puede ver el circuito que se emplea en el video que luego se incluye. Se ven las señales P (principal, verde/roja) y A (avanzada, verde/amarilla) y junto a ellas los correspondientes sensores H y B que son sensores Reed . Como se ve el sensor B se conecta al PWM76 por la borna "B" lo que hace la función de "anuncio de parada" y lo mismo el sensor H se conecta a la borna "H" lo que hace la función de parada inmediata.

El otro polo de estos sensores se conecta, no al negativo de la alimentación, lo que haría que funcionasen siempre, sino a la conexión que enciende los leds rojo y amarillo de las señales (conexión representada en color Cyan) y que solo se une al negativo de la alimentación cuando el BLKS03 está en situación "Set"

Y voilá: aquí está funcionando:




Como digo, el circuito montado para grabar el vídeo, corresponde al esquema incluído más arriba.

Hay que tener en cuenta que se trata exclusivamente de lo que correspondería al final de un cantón, de un sistema de bloqueo creado con controladores PWM76, para conseguir paradas y arrancadas progressivas y reconocimiento de señales simulando el sistema ASFA.

Tal como se describe en el propio manual del PWM76, montar un bloqueo automático con estas características en el que se aprecie mínimamente el funcionamiento, requiere trazados muy largos, y por lo tanto no se puede reproducir en un circuito de pruebas como el que se ve en el video. Por ello se ha reproducido solamente lo que sería el final de un cantón, y para conseguir que las señales cambien de aspecto, lo que en una instalación completa sería consecuencia de la circulación de los trenes por el resto del circuito, se ha puesto un mando manual, que en el vídeo se ve que se activa a mano para actuar sobre las señales. Realmente este mando manual que se ve el video corresponde a las dos conexiones terminadas en flechas hacia la derecha e izquierda (azul y violeta) por donde, efectivamente, ese esquema emite y recibe las señales de los otros cantones del circuito que aquí no existen

El Controlador PWM76 ASFA está a la venta en la tienda on-line:

jueves, 30 de mayo de 2019

Nuevo TIMER-2


Hace ya más de dos años, presenté aquí un temporizador (véase TIMER) que realicé con la idea de de controlar con él el tiempo de aceleración y frenada de uno de los primeros controladores con inercia. Naturalmente, además de ese uso servía para realizar paradas de los trenes por ejemplo ante una señal o en una estación, y lo vimos funcionando en el video PWM70 haciendo paradas temporizadas en circuito cerrado y con un tren lanzadera.

Sin embargo, a pesar de que estuvo varios meses en la tienda, no tuvo ningún pedido, por lo que lo retiré, sobre todo porque detecté que a entrada era un poco inestable.

Sin embargo, como en otros casos, ha ocurrido que después de retirar un producto por falta de pedidos, se empiezan a recibir peticiones de que vuelva a ponerse a la venta. Este ha sido el caso, así que como creo que puede ser útil, he hecho una nueva versión, corrigiendo un poco el diseño y se pondrá a la venta en breve.

Lo dicho para aquella primera versión sigue siendo válido para éste, salvo que ahora tenemos tres entradas en lugar de una. En realidad lo que tenemos es un chip de puertas lógicas "OR" del que se utilizan tres entradas, es decir, el mismo esquema que todos los demás dispositivos electrónicos que vengo diseñando y que ha dado tan buen resultado. Esto ha estabilizado la activación y como ventaja adicional se pueden conectar varios dispositivos de activación sin que se interfieran.

En el video siguiente, se puede ver el circuito funcionando en uno de sus usos más habituales, es decir, creando una parada por un tiempo determinado en la circulación de un tren

El video tiene dos partes: En la primera lo usamos con un controlador PWM72, y se hace la demostración de cómo se puede ajustar el tiempo de parada y también de como utilizarlo para invertir el sentido de la marcha, que es función habitual para los trenes lanzadera.

En la segunda parte se hace la demostración con un PWM76 ASFA (Que por cierto es el primer vídeo en el que lo vemos funcionando con trenes) y se resalta cómo con este tipo de controlador las paradas y arrancadas son mucho más suaves que con el anterior.




Hay que destacar, que aunque se trata de funciones completamente automáticas, ya que como vemos no se actúa manualmente para nada, la complicación del montaje para conseguir esto es relativamente baja.

El montaje para el uso con el controlador PWM72 es exactamente el que vemos en esta imagen:

Sencillamente el sensor, cuando se activa, envía la señal (linea verde en la imagen) tanto al controlador, donde activa la función "S" como al TIMER-2 que empieza la cuenta de tiempo. Con la función S el controlador para el tren. Transcurrido el tiempo ajustado, el TIMER 2 emite una nueva señal por la salida PULSE que es llevada (linea azul) a la entrada "F"del controlador, con lo que éste vuelve a poner el tren en marcha. 

Si en vez de llevar la salida del temporizador a la entrada F del controlador, la llevamos a la entrada R el tren arrancará en sentido contrario.

El montaje para el controlador PWM75 VO o PWM76 ASFA es el que se muestra en la imagen siguiente (en la imagen se representa un PWM75 y en video vemos un PWM76, pero para este caso es indiferente)


La diferencia es que se añade un segundo sensor avanzado en el punto en que queramos que empieze a disminuir la velocidad del tren. Este sensor activa la función "B" (aviso de parada) en el controlador, que efectúa esa progesiva reducción de velocidad.

El sensor principal, situado donde queremos que pare el tren funciona igual que en el caso anterior, es decir activa la función "H" (parada inmediata) que detiene el tren en ese punto, y pone en marcha la cuenta del controlador.

Trascurrido el tiempo programado el TIMER-2 emite por la salida PULSE una señal que llevamos a la función T (via libre) del controlador, con lo que el tren arranca progresivamente.

Nótese que con la función T el tren reanuda la marcha siempre en el mismo sentido que tenía cuando se paró. Si se desea un arranque hacia atrás, habría que llevar también la señal  de PULSE del TIMER-2 a la función R del controlador.

Hay una pequeña diferencia en el comportamiento del controlador PWM75 y PWM76, ya que el segundo, que es el que vemos en el video, permite que cuando la locomotora alcanza el sensor principal, no frene bruscamente como en el caso del PWM75, sino que lo haga de forma un poco más suave, haciendo una parada más realista. Esto se puede apreciar muy bien en este video.

El temporizador TIMER-2 está a la venta en la tienda on-line:

miércoles, 1 de mayo de 2019

Exito


Pues casi ni yo mismo se porqué me lancé a desarrollar este último controlador PWM76 ASFA, aunque ya expuse aquí las mejoras que aportaba respecto del anterior PWM75 VO, pero también expuse mis dudas respecto a que las mejoras que incorporaba justificasen el aumento de precio que inevitablemente conllevarían estas mejoras.

Bueno, pues como saben los lectores de este blog, ahora la fabricación y venta las lleva otra persona que ofrece mis productos en su tienda https://rhtraincontrollers.mycomandia.com/ a la que acabo de transmitirle el proyecto para su comercialización.

Y lo que me comunica es que nada más ponerlo a la venta, ya ha recibido algún pedido, lo cual parece indicar que había cierta expectación por este producto. Me ha sorprendido un poco porque realmente no se ha visto todavía un vídeo en el que se pueda apreciar bien su funcionamiento controlando un bloqueo automático con frenadas y arranques progresivos, pero parece que las explicaciones dadas aquí en artículos anteriores han sido suficientes para interesar a más de un posible comprador.

A falta de vídeo, que tengo la intención de hacer, en cuanto pueda, lo que si es interesante es que en el folleto de instrucciones, se ha incluido un apéndice con una detallada explicación de la forma de planear, montar y cablear un sistema de bloqueo, utilizando este equipo y los BLKS03
para conseguir un bloqueo automático con manejo de señales principales y avanzadas, y por supuesto con frenadas y arrancadas progresivas,  algo muy similar a lo que se obtiene con un sistema digital y con decoders equipados con ABC.

Quien tenga la intención de utilizar uno de estos controladores para hacer un bloqueo automático con éstas características puede bajarse el folleto en PDF en la tienda de RH Traincontrollers para estudiarlo y ver si cumple sus expectativas.

Y ahora, ¿Qué hago yo?  ¿Rehacer de nuevo el cuadro de control de mi propia maqueta para sustituir los PWM75 VO por los nuevos PWM76  ASFA? Sería la quinta versión del cuadro, aunque conociéndome, me parece que no voy a tener más remedio.


El Controlador PWM76 ASFA está a la venta en la tienda on-line: