http://holybiblecoloring.wordpress.com/goal-and-system-of-the-encyclopedia/ |
Hace ya más de dos años, escribí en este blog el artículo Mando y señalización de desvíos, que mes tras mes, resulta desde entonces el más visitado, habiendo acumulado hasta la fecha de escribir éste, casi 4000 visitas. Este interés indica que este tema de los desvíos resulta problemático en muchos casos, y los aficionados buscan soluciones a las dificultades con que se encuentran.
Sin embargo en aquél artículo se habla de las distintas formas de mando, pero no se trata para nada de la fuente que suministra la energía para ese circuito de mando. Lo más que se llega a decir, es que en general es válido cualquier suministro de energía ya sea de corriente alterna o de corriente continua
Sin embargo, han surgido últimamente en algunos foros de aficionados a los trenes, algunas preguntas acerca de cuál es la mejor forma de alimentar los circuitos que mueven los motores de desvíos, lo que me ha motivado a estudiar un poco más profundamente el tema, y exponer mis conclusiones.
Tradicionalmente, las marcas de trenes analógicos ofrecen "transformadores" para controlar los trenes que producen una corriente variable para controlar la velocidad de los trenes, y que puede ser alterna o continua, y además una salida "auxiliar" que normalmente produce corriente alterna y se usa para alimentar los motores de los desvíos.
Por otra parte, muchos aficionados han optado por la operación digital, con lo cual ya no tienen ese transformador-regulador tradicional de los trenes analógicos, pero desean mantener el funcionamiento de los desvíos en modo analógico, por lo que necesitan algún "transformador" capaz de proporcionar la corriente necesaria
Pongo la palabra entre comillas porque cada vez más, esos "transformadores" han dejado de ser un verdadero transformador, y para el caso de corriente continua, han pasado a ser fuentes de alimentación conmutadas, que por lo tanto producen corriente continua muy bien filtrada y estabilizada. Esto, que para la corriente de tracción que alimenta las locomotoras es perfecto, no lo es tanto para el caso de los desvíos.
El hecho de que la corriente sea continua, no es malo para el caso de los desvíos, muy al contrario, ya que con corriente continua los desvíos funcionan mejor y sobre todo no chicharrean, pero así como un transformador clásico es bastante tolerante a un cortocircuito en el secundario, una fuente conmutada se resiste bastante a este caso gracias a sus protecciones.
Y ¿porqué hablo de cortocircuito en el secundario? Pues porque cuando presionamos el pulsador para accionar un desvío, que está conectado a un transformador, hacemos algo muy próximo a un cortocircuito. Un valor típico de la resistencia óhmica de una bobina de un motor de desvío puede ser de 10 Ohmios de manera que si el transformador nos está dando 12 Voltios la ley de Ohm nos informa de que la corriente que circula por la bobina será de 12/10 = 1,2 Amperios. Es decir para mover el motor de un (uno solo) desvío se necesita un transformador capaz de suministrar 1,2 Amperios, o sea que el transformador mínimo para esta misión debe ser de 15 VA.
¿Qué pasa si el transformador no es capaz de dar esa potencia? Por ejemplo ¿que pasa con un transformador de 500 mA o lo que es lo mismo de 6 VA, que es lo que viene muchas veces en cajas de iniciación? Lo que va a ocurrir es que el transformador, en el momento de pulsar el botón del desvío queda conectado a una carga de 10 Ohm y como solo puede dar 500mA la tensión baja de 12 a 5 Voltios, (algo en efecto muy cercano a un cortocircuito) Esto no supone ningún problema para el transformador, sobre todo porque dura sólo mientras estamos pulsando el botón, pero por la bobina del motor de desvío pasan solamente 0,5 Amperios en lugar de los 1,2 Amperios que deberían pasar. Esto hace que el movimiento del desvío sea débil y que en muchas situaciones el movimiento no llegue a completarse.
Lo dicho es para un caso general, pero hay situaciones que empeoran el problema: Por ejemplo algunas marcas de desvíos (PECO por ejemplo) tienen motores de desvío para colocar bajo tablero (modelo PL-10) con una resistencia de bobina de solamente 5.5 Ohmios. Peco dice que se conecten a 16 Voltios, lo cual quiere decir que por la bobina pasarán 16/5,5 = 2,9 Amperios que a 16 Voltios, supone la necesidad de un transformador de 46 VA, en la práctica de 16 Voltios y 3 Amperios.
Esto, en principio no es malo. Si por la bobina de estos desvíos circulan 2,9 amperios la fuerza que son capaces de hacer es bastante mayor que con un desvío normalito por el circulan sólo 1,2 amperios, con lo que se trata de garantizar el funcionamiento.
Pero lo dicho es para UN desvío. En las maquetas, normalmente hay muchos, pero afortunadamente nunca funciona más de uno al mismo tiempo, salvo que seamos impacientes y presionemos varios pulsadores al tiempo. Por eso se dice que el número de desvíos que hay en una maqueta no es significativo para determinar la potencia del transformador necesario, Téngase en cuenta que lo habitual es que el desvío lo activemos durante tiempos inferiores al segundo.
Sin embargo, hay situaciones en las que esto no se cumple. Es muy habitual por ejemplo que se conecten dos desvíos al mismo pulsador. Por ejemplo en un escape entre dos vías paralelas, como en la imagen de la derecha, los desvíos deben estar o bien ambos en recto, o bien ambos en desviado, así que de esta forma garantizamos que es así y además facilitamos el manejo. Hay también situaciones en las que varios desvíos se accionan desde el mismo mando (pulsador, reed, o relé) para realizar automatismos para estaciones ocultas en las que los trenes deben dirigirse a las vías que estén libres etc.
Cuando conectamos dos desvíos o más al mismo pulsador, sus bobinas quedan en paralelo, y por lo tanto la resistencia resultante hay que calcularla con la regla de la conexión de resistencias en paralelo (inversa de la suma de inversas) así que por ejemplo dos desvíos PECO de 5.5 Ohmios conectados en paralelo, presentan una resistencia equivalente de 2,75 Ohmios. Aplicando entonces la misma regla anterior, la intensidad que debe entregar el transformador es 16/2,75 = 5,8 Amperios. ¡y esto sólo para dos de estos desvíos!
Esta es la razón de que en los foros sea habitual ver cómo se recomiendan grandes transformadores para alimentar los desvíos. Titán es una de las marcas más recomendadas. Incluso en alguna ocasión, he visto el comentario de algún compañero que recomendaba utilizar una potente fuente de alimentación conmutada para suministrar la corriente a los desvíos.
En primer lugar hay que decir que las fuentes de alimentación conmutadas, que son excelentes para proporcionar una alimentación estabilizada filtrada y protegida para la tracción de los trenes (ya sea para controladores analógicos o digitales) no son adecuadas para alimentar motores de desvío. Su principal virtud, que es el proporcionar una tensión estable a lo largo del tiempo, no tiene ningún sentido en una utilización que dura décimas de segundo entre largos intervalos de inactividad. Su perfecto filtrado resulta inútil ante un tirón de corriente de varios amperios y décimas de segundo de duración que es un puro transitorio, y por último como la fuente sea lo suficientemente buena, lo que ocurrirá es que interpretará ese tirón de corriente como un cortocircuito y se cortará. Así que la primera conclusión es: Nada de fuentes de alimentación conmutadas para alimentar desvíos.
La alternativa es un potente transformador, y de hecho es la más recomendada en todos esos comentarios a los que me refería, pero también tiene algún inconveniente. En primer lugar un transformador de elevada potencia es caro, pesado y voluminoso.
Por otro lado, es en cierto modo peligroso. Si por el motivo que sea (un pulsador que se atasca, un niño que se entusiasma, etc.), mantenemos la alimentación de un motor de desvío durante bastante tiempo, el transformador es capaz de mantener durante un tiempo indefinido toda su potencia actuando sobre el motor de desvío, lo cual acaba por quemarlo en muy poco tiempo. Por ejemplo el caso de los desvíos PECO antes mencionados, con un transformador capaz de dar 2.9 Amperios a 16 Voltios hará que la bobina del desvío disipe una potencia de 46 Watios que se transforman en calor. Esto hace que la bobina se destruya en segundos. Y desde luego cualquier cortocircuito en este cableado producirá fuertes intensidades que pueden quemar cables etc.
Afortunadamente hay una solución, a estos problemas que además resulta relativamente económica. Me refiero a las Unidades de Descarga de Condensador. PECO, cómo no, después de lo dicho, tiene una con la referencia: PL-35 Capacitor Discharge Unit ( a la izquierda)y hay de otras marcas, como Gaugemaster (más abajo).
La teoría del funcionamiento se basa en lo siguiente: En realidad la bobina de un desvío se mueve cuando por ella circula una intensidad grande durante un tiempo muy pequeño. Por ejemplo 3 Amperios durante 0.2 segundos. En física se diría que eso equivale a una carga eléctrica de 3 x 0.2 =0,6 Culombios.
La cuestión es entonces que si disponemos de un elemento capaz de almacenar 0,6 Culombios y descargarlos por la bobina del desvío al accionar el pulsador, el desvío se movería con la misma eficacia que con un transformador de 3 Amperios Un elemento capaz de almacenar carga eléctrica es, en electrónica, un condensador así que si somos capaces de almacenar 0,6 Culombios en un condensador podemos mover con ello un desvío. La pega es que para almacenar 0,6 Culombios a 12 Voltios se necesita un condensador de 0,6 / 12 = 0,05 Faradios, o sea 50000 microFaradios.
Bueno, ¿existen esos condensadores? pues la verdad es que si, aunque son un elemento bastante voluminoso (por ejemplo 3 cm de diámetro por 5 de longitud) y no muy fácil de encontrar .Por eso es bastante característico en las unidades de descarga la presencia de uno o dos "botes" relativamente grandes que son los condensadores.
Lo primero que hay que decir es que la "cuenta de la vieja" que he hecho para calcular la capacidad del condensador es solo una aproximación, porque un condensador no se descarga con una intensidad constante durante esos 0,2 segundos que he considerado. En realidad la descarga de un condensador sobre una resistencia sigue una curva decreciente cuya ecuación es bastante difícil de tratar.
Afortunadamente siempre hay en Internet algún alma caritativa que nos da hecho el calculador apropiado para manejar cualquier problema de este estilo. Para este caso, voy a usar el que aparece en el enlace siguiente: Capacitor Dischargin
Voy a tomar los siguientes datos: Resistencia: La de la bobina de un motor de desvío PECO: 5.5 Ohmios Tensión: 16 Voltios. Capacidad del condensador 33000 uF
Introduciendo esos datos en el calculador, se obtienen los siguientes resultados:
Tiempo Intensidad
0.0 seg 2.9 Amperios
0.1 seg 1.6 Amperios
0.2 seg 0.9 Amperios
0.3 seg 0.1 Amperios
Obsérvese que en efecto en el primer momento hay una fuerte intensidad que alcanza los 2.9 amperios, lo que corresponde a un transformador de "potencia infinita" suministrando 16 voltios a la bobina. En menos de una décima de segundo la corriente ha bajado a 1,6 Amperios y en dos décimas de segundo ya está por debajo de un Amperio. Como se ve esto es justamente lo que se necesita para mover eficazmente un desvío: Un tirón de una intensidad muy fuerte durante un tiempo muy pequeño.
Pero veamos algo muy interesante: supongamos que conectamos dos desvíos de PECO en paralelo. Como ya hemos dicho, la resistencia equivalente es ahora de 2,75 Ohmios. Volviendo a calcular con ese valor se obtienen estos resultados:
Tiempo Intensidad
0.0 seg 5.81 Amperios
0.1 seg 1.93 Amperios
0.2 seg 0.64 Amperios
0.3 seg 0.21 Amperios
Observamos que la corriente ha aumentado automáticamente! De hecho la corriente inicial es justamente el doble que en el caso de un único desvío. Efectivamente esa corriente se va a repartir entre los dos desvíos de manera que por cada uno de ellos pasarán los 2.9 Amperios que pasaban antes por un solo desvío. O sea que, aunque aumente el número de desvíos, la corriente que circula por cada bobina es siempre la misma, la correspondiente a un transformador "ideal" de 16 Voltios capaz de proporcionar una potencia infinita.
Naturalmente de donde no hay no se puede sacar, así que la curva de descarga cae más rápidamente con valores más bajos de la resistencia de la bobina. Por eso se necesita un condensador de capacidad suficiente para que se mantengan valores apreciables de la corriente al menos durante unas décimas de segundo.
Obsérvese que la descarga del condensador produce solo un pico de corriente continua y de muy corta duración. Por ambos motivos, se evita por completo el sonido de chicharra de los motores de desvío así alimentados
Bien, y una vez que el condensador se ha descargado, ¿cómo volvemos a dejarlo cargado para el próximo movimiento de un desvío? Las unidades de descarga que yo conozco dejan este problema al usuario. Lo normal sería colocar esta unidad de descarga en paralelo con la salida del transformador, pero esto no es posible porque la unidad de descarga requiere corriente continua.
Algún aficionado, queriendo hacer las cosas bien se gasta el dinero en una fuente estabilizada, filtrada etc. Todo eso es inútil. Lo único que se necesita es puramente corriente rectificada, o sea lo que podemos obtener con un transformador y un puente rectificador, o incluso más sencillamente, con un transformador con toma media en el secundario y dos diodos rectificadores. En ambos casos se produce una corriente rectificada de onda completa que llevándola directamente al condensador nos lo cargará al valor de pico de la tensión rectificada. O sea que con un transformador de 12 voltios de salida alterna, podemos cargar el condensador a 16 Voltios.
Bien, y ese transformador ¿de qué potencia es? no sea que después de todo este lío vayamos otra vez a por el macrotrafo. Pues la respuesta es que realmente puede ser de la potencia que queramos, porque no influye para nada en el funcionamiento de los desvíos. Como hemos visto, en todo el cálculo efectuado de la descarga del condensador y demás, no se habla para nada del transformador, y es que realmente en todo ese proceso no actúa para nada. El transformador lo que hace es volver a cargar el condensador cuando éste se ha descargado, y por lo tanto cuando el desvío ya se ha movido. La mayor o menor potencia del transformador lo que determina es cuanto tiempo tarda en volver a cargarse el condensador, o sea en cuanto tiempo podemos volver a pulsar el pulsador de un desvío después de haber movido un desvío anterior.
La página que antes referenciaba tiene también la posibilidad de estudiar la carga del condensador. El cálculo es menos exacto porque habría que saber una serie de características del transformador y del rectificador, pero podemos hacer una aproximación con estos datos:
Resistencia del bobinado, rectificador, etc: 20 Ohm Tensión del secundario 16 V Capacidad del condensador: 33000 uF
Con estos datos, partiendo de que el condensador estuviese totalmente descargado, la carga se produce de la siguiente forma:
Tiempo Intensidad % de carga del condensador
0 seg 0.8 A 0%
0.5 seg 0,3 A 53%
1 seg 0,17 A 78%
1,5 seg 0,08 A 89%
2 seg 0,03 A 95%
Obsérvese que en estas condiciones, en dos segundos el condensador está ya recargado al 95% (en teoría nunca llega al 100%) lo que permite volver a hacer otro movimiento con toda seguridad. Y para esto, la intensidad que ha proporcionado el transformador es de 0.8 Amperios inicialmente, pero al medio segundo ya es solamente de 0.3 A y a partir del 1 segundo o poco más de menos de 100 miliamperios. En definitiva un pequeño transformador de 500 miliamperios es más que suficiente para recuperar la carga en menos de dos segundos.
Asi que con un pequeño transformador, un puente rectificador y nuestra unidad de descarga capacitiva de 33000 uF podemos mover los desvíos más hambrientos de amperios con seguridad y a un coste muy limitado.
Y lo de seguridad no es solo la seguridad de que se van a mover los desvíos, sino la seguridad frente a la posibilidad de quemar las bobinas. Antes calculamos que, con el gran transformador, una bobina de un desvío PECO que se queda conectada, se calienta con una potencia de 46 Watios. Si con este ultimo montaje, una bobina se queda conectada, la intensidad que por ella circula es solo la que proporciona el transformador, porque el condensador se queda descargado. Si tenemos un transformador de 500 mA que queda alimentando la bobina de 5,5 Ohmios, la potencia disipada en la bobina será de 1,375 Watios. Nada que ver con los 46 Watios que teníamos con el transformador grande. Así que el peligro de que se queme la bobina del desvío prácticamente desaparece con este sistema.
Seguramente algunos lectores cuya formación no incluya estos temas de electrotecnia, se habrán sentido un tanto desorientados y posiblemente un tanto escépticos ante la avalancha de Ohmios Amperios, Voltios Culombios y demás parafernalia. Sin embargo este sistema tiene una analogía muy semejante en algo tan cotidiano como la cisterna de un inodoro.
Supongamos que la cisterna es el condensador. La cisterna se llena poco a poco mediante una tubería de poca sección por la que entra el agua, hasta que la cisterna se llena. En ese momento deja de entrar agua y la cisterna queda llena a la espera de que la usemos. Cuando apretamos la palanca de descarga, toda el agua acumulada se descarga en un tiempo cortísimo, produciendo un gran caudal de agua pero de muy corta duración, Si mantenemos la palanca de descarga abierta, la única agua que continua fluyendo es la poca que proporciona la tubería de entrada. Cuando soltamos la palanca, se cierra la salida de la cisterna y esta empieza a llenarse otra vez con el agua que llega por la tubería de entrada, lo que requiere algunos minutos en función del caudal que pueda producir esa tubería. Obsérvese que el caudal de la tubería de entrada, que en nuestro caso hace el papel del pequeño transformador, no influye en la cantidad y velocidad del agua que se vierte en cada descarga, sino solo en el tiempo que la cisterna tarda en volver a llenarse.
Bueno, pues después de toda esta disertación teórica había que mojarse. Asi que he grabado en video una prueba en unas condiciones bastante límite: He puesto en un pequeño tablero dos motores de desvío PECO PL-10 y los he conectado en paralelo. El accionamiento es mediante un sencillo conmutador con cero central. Como alimentación he utilizado un transfomadorcito de sólo 150 mA con salida simétrica a 12 voltios, y mediante un par de diodos 1N4007 se carga un condensador que para la prueba es de 12000 uF y 35 Voltios.
Para que no se diga que los motores de desvío funcionan en vacío, les he acoplado a dos desvíos de escala N de Fleishmann. En el vídeo se ve perfectamente como los dos desvíos se mueven al unísono con un movimiento rápido y preciso y sin producir ninguna clase de zumbido.
Al final del vídeo he conectado un voltímetro que mide la tensión en bornas del condensador. Como se puede ver, en vacío la tensión es del orden de 18,5 Voltios y al accionar el motor desciende prácticamente a cero, pero se recupera en unos pocos segundos a pesar de la poca potencia del transformador.
El condensador de 12000 uF vale unos 5 € y un transformador de 150 mA anda por los 8 €, asi que no creo que exista ningún sistema más barato que permita mover con seguridad dos desvíos de PECO puestos en paralelo.
Así que este pequeño transformador, como el David de la Biblia, ha derrotado o al menos empatado con uno de esos grandes transformadores de la marca Titán con que muchos aficionados resuelven sus problemas, desde luego a un menor coste.
En conclusión, con un transformador un poco más decente y un condensador de mayor capacidad se puede garantizar el funcionamiento de cualquier motor de desvío y también sin problemas de conjuntos de varios desvíos alimentados en paralelo, con tiempos de recuperación muy cortos.
Lo bueno es que no tenemos que poner uno de estos dispositivos a cada desvío, ni siquiera a cada grupo de desvíos. Uno solo de estos elementos puede hacer funcionar de la misma forma todos los desvíos de una maqueta, ya funcionen en solitario o agrupados. Se trata más bien de que el conjunto de transformador más unidad de descarga constituye una "Fuente de alimentación para desvíos" con la que podemos alimentar todos los desvíos de la maqueta sin tener que hacer ningún cambio en el cableado.
Editado 06/06/2014
Como me han llegado varias peticiones en este sentido, incluyo a continuación el esquema del circuito que se ve funcionando en el video:
Aclaro sin embargo que los elementos son un poco justos. Para hacer una CDU con suficiente potencia recomiendo usar un transformador de 500 mA y 15 V de salida y un condensador de 33000 uF y de 25 V o 35 V
Perfecta explicación y no menos el video demostrativo, he seguido desde hace tiempo este tema y mi idea era conectarlo como tu, directamente en paralelo, eso si, con pulsador. Gracias.
ResponderEliminarHola. Gracias por tu interés
EliminarRespecto del conmutador en lugar de pulsadores lo usé porque es que tenía a mano, pero es completamente equivalente.
Un Saludo
Ignacio
Lo que entiendo es que se le dá al cambio una descarga pero de corriente continua, en mi caso con desvios fleishmann que van con alterna ¿funcionará o los romperé?, gracias por la aclaración
Eliminarun saludo
Jordi tb
Hola Jordi
ResponderEliminarTodos los desvíos con motor de bobinas, incluyendo los de Fleischmann, funcionan perfectamente con corriente continua. De hecho mejor que con alterna.
Lo que pasa es que para abaratar el transformador, los fabricantes suelen utilizar corriente alterna.
Asi que no tengas miedo: tus desvíos de Fleischmann pueden funcionar perfectamente con corriente continua, y si es una corriente continua de verdad (no una alterna rectificada sin filtrar, como la de los alimentadores de los chinos) además no harán el molesto ruido de chicharra que hacen con la alterna.
Un Saludo
Ignacio
Gracias Ignacio, ahora tengo un par de dudas más, el transformador de 150 mA es de entrada 230 y salida 12 v, pero los dá en continua, supongo que el diodo será para cargar el condensador y diferenciar positivo de negativo, en el video no veo donde va colocado te agradecería me lo expliques, cuando lo tenga claro, ( mejor cuando me entere bién), me pasaré por Diotronic a comprarlo.
Eliminarsalut
Jordi Tomás
Hola Jordi.
EliminarNingún transformador da la salida en continua.
El transformador que se ve en el video, es de 150 mA y salida de 12 + 12, es decir tiene una toma central y dos salidas simétricas de 12 voltios. En alterna, claro.
De cada una de esas salidas sale un diodo 1N4007 con el ánodo hacia el transformador y el cátodo hacia el condensador, Los dos cátodos se juntan en el terminal positivo del condensador y esa es la salida de corriente continua positiva.
Del punto central de las dos salidas de 12 V del transformador sacas otro hilo al terminal negativo del condensador y de ahí a la salida negativa.
La salida es continua porque los dos diodos rectifican la corriente y el condensador se carga a la tensión de pico.
Espero habértelo aclarado. Un Saludo
Ignacio
Ahora el problema es que no encuentro ni el transformador ni el condensador, iré buscando por Bcn. aunque ya me quedan pocas tiendas.
EliminarHacía muchos años que no tocaba ninguna de estas cosas y estoy un poco anquilosado más que un poco "muuuucho".
Muchas gracias por tu paciencia. Me lo has aclarado y refrescado.
un saludo
Jordi Tomás
Hola Jordi.
EliminarComo apareces como "Anónimo" no puedo mandarte un correo. Por favor mándame tu uno a mimaquetaz@gmail.com y te daré alguna solución.
Lamento comentar que para los desvios arnold no sirve :(
ResponderEliminarHice la prueba con 3 condensadored de 10.000 uF en paralelo cargados hasta 18v sin lograr mover los desvíos :(
Quizás al tercer intento logra mover dos desvios juntos.
¿Puedes decirnos cuál es la resistencia óhmica de las bobinas de los desvíos arnold?
EliminarDe todas formas, como ya se dice en el artículo la prueba del vídeo es una prueba de mínimos. En las fuentes que he construido posteriormente utilizo un condensador de 33000 uF y un transformador de 1,25 Amperios.
Sin utilizar condensadores ¿Sabrías decirnos que intensidad de salida se requiere para mover los tres desvíos?
Un saludo
A ver si llega la respuesta!
EliminarLas bobinas tienen 22~25 ohms, con el trafo MiniTrix de 500mA no logro mover dos desvíos a la vez.
Según el fabricante funcionan con 12-17V CC o 15V CA.
Acualmente uso un trafo de 15V CA y 3A. Chiquito ¿no? jeje!
Las pruebas las hice con 30.000 uF y un trafo de 12V y 1A.
¿Alguna idea?
Hola.
EliminarHe visto tu post en Railwaymanía , y tienes razón en que colocando un desvío de 25 Ohmios alimentado por un transformador de 15 V, circulará una intensidad de 600 mA. Si el transformador es de 500 mA de potencia, lo que ocurrirá será que caerá la tensión aproximadamente a 12,5 Voltios con lo que por la bobina circulan 500mA.
Aunque el motor del desvío está previsto para 600 mA, funcionará solo con 500
El problema viene cuando conectas dos desvíos en paralelo. La resistencia equivalente es entonces de 12,5 Ohm y conectándolos al mismo transformador, si la corriente no supera los 500 mA, la tensíón bajará hasta 6,25 Voltios. Entonces por cada bobina circulan 250 mA
Está claro que una bobina diseñada para funcionar con 600 mA no funcionará bien con solo 250 mA
Evidentemente con tres desvíos el problema se agrava, ya que entonces la resistencia equivalente de los tres desvíos es 8,33 Ohmios y por lo tanto la tensión cae a 4,16 Voltios lo que produce una intensidad en cada bobina de sólo 166 mA. Es evidente que con eso no se van a mover los desvíos.
(continúo en un segundo comentario)
(continuación)
EliminarLa introducción del condensador tiene el efecto de comportarse como si fuera un transformador de potencia infinita, es decir si el condensador está cargado con 15 Voltios, la intensidad Inicial que circula por una bobina de 25 Ohmios es de 600 mA, pero si conectamos dos bobinas en paralelo la intensidad será 600 mA en cada bobina (1,2 Amperios en total) y si conectamos tres, la intensidad inicial en cada bobina sigue siendo 600 mA por lo que el total es de 1,8 Amperios.
Pero estoy hablando de intensidad Inicial. En décimas de segundo esta intensidad total baja hasta el valor que pueda mantener el transformador, 500 mA en este caso, y como hemos visto con eso no funcionan las bobinas
El tiempo que tarda en caer la intensidad, desde su valor inicial, al proporcionado por el transformador, depende del valor inicial de la intensidad y de la capacidad del condensador. En realidad lo que proporciona el condensador es una determina cantidad de electricidad, que, medida en Culombios, es igual a su capacidad en Faradios por su tensión en Voltios. Esta cantidad de electricidad produce una intensidad decreciente en el circuito, pero al final la integral de la intensidad
a lo largo del tiempo que tarda en descargarse es igual a la carga en Culombios almacenada por el condensador.
Por eso, hay que poner un condensador capaz de almacenar una carga lo suficientemente grande como para que la intensidad no decaiga antes de que se hayan movido las bobinas. Aquí influye un factor que no es eléctrico sino mecánico, y que tiene que ver con la construcción del desvío: Para que las agujas se muevan tienen que recibir un impulso de suficiente potencia como para vencer las resistencias mecánicas que se oponen a su movimiento: por un lado la inercia, por otro lado el rozamiento, y puede haber todavía una tercera resistencia, derivada de un mecanismo de enclavamiento elástico que tenga el desvío para asegurar que las agujas se enclavan en una u otra posición.
Hay desvíos que no llevan este enclavamiento mecánico, y en otros se puede quitar. La decisión de conservarlo o no depende del mecanismo de accionamiento de los desvíos. Si el propio mecanismo ya tiene un enclavamiento no es necesario que el desvío lo tenga y se puede quitar.
En cualquier caso, si conectando tres desvíos no se mueven bien y conectando dos si, es que el menor tiempo de descarga en el caso de los tres desvíos es insuficiente para vencer las resistencias mecánicas del desvío.
La solución en este caso puede venir por dos caminos: o disminuímos las resistencias mecánicas de los desvíos, eliminando (si lo tienen) los enclavamientos mecánicos, o disminuyendo el rozamiento, de manera que se necesite menos fuerza para desplazar las agujas, o bien aumentamos el tiempo de descarga del condensador, poniendo un condensador de mayor capacidad.
Como ves el tipo de desvío tiene mucha importancia en este asunto. Los motores de desvío PECO, probados en este artículo tienen una resistencia eléctrica muy baja, por lo que requieren una intensidad muy alta, pero su construcción hace casi nulas las resistencias mecánicas (no tienen enclavaniento, y la armadura se mueve muy libremente). Otros desvios, como pare que ocurre con los Arnold pueden tener resistencias mecánicas mayores y por lo tanto necesitar u tiempo de actuación mayor. Recuerda que para el resto de condiciones iguales el tiempo de actuación disminuye al poner más de un desvío en paralelo, por lo que para mantenerlo en tres o más desvíos puede ser necesario aumentar la capacidad del condensador.
Un Saludo
Ignacio de la Fuente
Hola otra vez.
EliminarHe visto otro comentario tuyo acerca de los desvíos de Arnold en el que parece que su calidad no sale muy bien parada. Parece que incluso se da alguna deformación en su base que no queda perfectamente plana y nivelada. Si todo esto es así no me extraña que los mecanismos de esos desvíos presenten importantes resistencias mecánicas, que serían sin duda la causa de tus problemas.
Ignacio, creo que el problema viene por ahí. El sistema de desvío de Arnold es imple pero propenso a errores.
EliminarEn muchos casos tuve que desarmarlos (retirando la tapa de chapa del lado de abajo) para luego doblar o enderezar partes del brazo actuador que viene realizado en latón.
En otros tuve que terminar de retirar restos de plástico que interferían con el desplazamiento del brazo actuador.
El caso del desvío triple de Arnold de Plataforma-N, ese es un mundo aparte y merecen ir a la carcel, jejeje!
Saludos y gracias!
Hola Ignacio
ResponderEliminarEstoy haciendo pruebas de paradas automáticas desvios y relés. Utilizo tus PWM04 para la tracción y con los relés de Märklin no tengo dudas en utilizarlos, pero cuando pienso en utilizar los Aneste 3000 veo en el esquema que se conecta a la salida de corriente alterna y a la continua del transformador de Märklin. Mi duda es que si estoy utilizando los PWM04 y además tengo que utilizar la salida de continua del transformador estaria mezclando dos tipos de corriente y me parece que nos es algo compatible. En un futuro no me preocupa ya que utilizaré los relés que tu has utilizado y la fuente de alimentación adecuada una vez que me entere bien de tus publicaciones.
Un saludo, Miguel Pérez
Hola Miguel
EliminarNo conozco los Aneste 3000 pero imagino, por lo que dices, que son relés de tipo biestable, alternativos a los relés de Märklin
Si es asi, es lógico que se utilice la corriente alterna para el mando de las bobinas, y que en el esquema se conecten los contactos del relé a la salida de continua del transformador, porque la utilización habitual de esos relés es cortar la corriente de tracción, que normalmente es la continua del transformador.
Si en vez de corriente continua, estas usando corriente pulsada generada por los PWM04, ésa es tu corriente de tracción, asi que olvídate de la continua del transformador que ya no usas y conecta la corriente pulsada de los PWM donde en el esquema indica que conectes la continua.